i/400 Consulting

Always Evolving

Consulting

TECHNICAL SPECIFICATIONS FOR PROGRAMMING
(In RPG ILE/free)
CONTENT

OBJECTIVE

SCOPE

CHAPTER I: GENERAL RULES FOR SYSTEMS DEVELOPMENT IN RPG ILE (Free)
CHAPTER II: TECHNICAL SPECIFICATIONS.

2.1. FOR SYSTEM DEVELOPMENT
2.2. FOR NOMENCLATURE TO BE USED
2.3. FOR EFFICIENT PROGRAMMING
OBJECTIVE
This document aims to establish standards and technical specifications to be followed by

employees of i/400 Consulting in RPG ILE language in "Free" format.

SCOPE
Maintain a standard for systems’ development, nomenclature to be used and programming
techniques, resulting in:
- A faster system development
- ease of maintenance of programs and
- ease programs reading.

CHAPTER I: GENERAL RULES FOR SYSTEMS DEVELOPMENT IN RPG ILE "FREE".
1. Program’s appearance is very important and the writing rules must be respected.
Therefore it's necessary to follow the instructions given here for systems’ development.

2. Each employee is responsible for respecting libraries assigned to the project, according
to specifications described in chapter II on this document.

3. All finished program must be submitted to project leader who will be responsible for
additional testing and approval.

4, Project leader is responsible for maintaining control over files and objects in libraries, so
other participants must request him any replacement, creation or suppression.

5. An interactive program will be considered finished when corresponding help panels (in
UIM) are ready and tested (when applicable).

6. All developed program must be documented with their respective "technical description
datasheet" which must be stored in the corresponding project’s folder.

7. All developed screens must comply with the 1BM SAA Standards, (unless client
requested otherwise).

i400 Consulting, Inc.
Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

| /ﬂL () () i/400 Consulting

Always Evolving

Consulting

8. Pass to Production must respect instructions given in the "Pass to Production format".

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama

+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

CHAPTER I1: TECHNICAL SPECIFICATIONS.
2.1. SYSTEM DEVELOPMENT

e Each Project will have in its source library all standard source files used by IBM plus some
specific of i/400 Consulting:
QRPGLESRC - RPG ILE Sources

QCMDSRC - Commands Sources

QDDSSRC - Files, screens and reports Sources

QCLLESRC - CL ILE Sources

QUIMSRC - UIM panels Sources

QCPYSRC - /Copy and /INCLUDE Sources

QSRVSRC - Service Programs and Bind Language Sources

o All projects must have a set of three (3) libraries: One for Sources, one for Data Files and
one for Objects. The names of these libraries should be defined according to the
nomenclature defined in section 2.2 further in this document. When the project does
not have enough sources and objects, the project leader may choose to use a single
library for sources, files and objects.

e Interactive Compilations MUST be avoided. All compilations must be submitted in BATCH.

e All programs: Interactive or batch, must respect the logic of the appropriate type
template.

e Instructions in the RPG ILE and CLLE programs must be written in a Upper/Low Case
(mixed) format (see “variable names” detailed below).

¢ Nested statements should be indented three (3) characters (the three dots indicate the

number of blank characters and are for display purposes only).
Example:
/[/->01 If Exit
I f *1nKg;
...Cear $Level;

] ====

.. LeaveSr

] ====

... Endlf;
//->01 Endlf

¢ Try to aligning assignment statements by the equal sign (=).

Example:
@revenue = RpflIng;
@st abi | i dadLabor al = Rpf ELDb;

i400 Consulting, Inc.
Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

@Debt = Rpf PEN;
@rel aci onCuot al ngresos = Rpf PCl;
@/al or M ni noGar anti a = Rpf VMG,

e Use a blank line between statements to improve readability when really necessary.

Example:
/I Search Range Val ues for each field

Kval or Hast a = @A\ge;

/1l Rate term

KKey = kRateTerm

Set || KCApcl sXFI R RApcl sXFI R;
ReadE KPApcl sXFI R RApcl sXFI R;
[1->01 1f Not Found

I f Not %of ();

¢ Use one line for each logical expression finishing line by the logical operator to improve
reading.
Example:
[1->01 If not |oaded first or |ast nane
If FirstNanme *Bl anks And
Last Nane *Bl anks;
Error;
Endl f;
//->01 EndIf

e For calls to programs or procedures using prototypes, set ALL parameters, if they fit, on a
single line, otherwise, place each one on separate lines.

Example:

/'l Search User Data

Cal Il P RtvCusCun(CusCun :
@usnal :
@usna? :
@usna3s :
@cusnad);

/ | Search Account Data
Cal | P Rt vAccRcd(Account : PtrAcMst)

2.2 - . NOMENCLATURE

All nomenclature is for /400 Consulting developments. Any Client request
must be respected.

« Avoid using symbols # and N in names, using them can become conversion issues.

¢ You must use the following abbreviations in File Names, Variables, Routines, etc. (not
exhaustive list).

i400 Consulting, Inc.
Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

ACC : Action

MOV : Movenent
BUS : Search

MIO : Anount

CAN : Quantity
NEW : New (Actual)

CHG : Change
NOM : Nane
CLI : dient
NUM : Nunber
CPY : Copy

QLD : dd (Previous)

CRT : Create

ORI : Oiginal/Oigin

CTA : Account

PRC : Process

DEA : desincorporar (OfFf)
REA : Reinstate (Reactivate)
DET : Detail

REG : Regi ster

DIR : Direction

SND : Send
ENC : Header
SOL : Request
ERR : Error

STT : Subt ot al
GRA : Record

TIP : Type

H'S : History

TOT : Total

INQ : Inquiry

TRN : Transaction
LOD : Load

UPD : Update

MAX : Maxi mum

VAL : Val ue or Validate (dependi ng on use)
M N : M ni num

VTA : Sal e

e When creating an abbreviation, it must allow identify its content.
Example : MSP - Maximum Sales Price .

e For all names:

DESCRIPTION INSTRUCTION
User Profiles 1. User Profiles must be identified by the first letter of first name
followed by user’s last name.

Libraries 1. Each programmer must have a library named according to his User
Profile.

i400 Consulting, Inc.
Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

2. Project Libraries must be named as described:

e PPPXLIB

Where:

PPP : Project Id.

X : Library content
F = Data Files
O = Objects
S = Sources

LIB : Constant

3. For clients with multiple projects, a common library will be created to
store all common sources and objects and must be named as follow:
e CMMCCC
Where:
CMM : Constant
CCC : Client Code used on Project Control System (CTP).

Data Files 1. All data files must be named according the following nomenclature:
e Physical Files: PPPXXXXX
Where:
PPP : Project Id.
XXXXX : Mnemonic identifying it's content.
e Logical Files and Indexes: PPPXXXLY
Where:
PPP : Project Id.
XXX : Mnemonic identifying the associated physical file.
L : Constant.
Y : Additional identifier (1 to 9 and A to Z).

2. All Mnemonics must identify file's content.
Example: CUST: Customer, MOVLG: Movements Log, etc.

3. All Field Names in Files must be named with a minimum of de 6
characters and respect abbreviations listed above.

4. Variables with same content must have the same name across all files.
For example Client Name must be named CLINAM in all Files and will
be programmer responsibility to manage duplicity in programs.

Programs 1. All Programs must respect the following nomenclature (except by client
request):
PPPYYY:
Where:
PPP : Project Id
YYY : Consecutive number in a range (with increments by 5)

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

001 - 399— Data Entry and Master Files Maintenance
400 - 499 - Reports
500 - 699 - Tables Maintenance
700 - 799 — Daily process
800 - 899 — Monthly and Annual process
900 - 999 — Monitors process
900 - 999 — Utilities

Service Programs | 1. Service programs names will use the following nomenclature:

PPPSRV

Where:

PPP : Project Id
SRV : Constant

2. Generic Service Programs (not project specific) must be named
according its functionality.
Example:
CMD — Manages Commands related functions
USRLST — Manages “User Lists” related functions

Display Files 1. Display Files must be named according to:
PPPPPPFM:-.
Where:
PPPPPP : Program Name where Display File is used
FM : Constant

2. Display Files Records will use the following nomenclature:
e Header Record:
HEADER — If only one header record in the file or a combination
of mnemonics to identify its content. (Example: CLIHDR: Client

Header).

e Message Record:
MESSAGE

e Id Record:

IDENT (for example, Id Number request).

e Subfiles:
SFLxxx - where xxx is a mnemonic identifying it's content -
CTLxxx (SFLxxx Control).

e Detail Record:
DETAIL - If just one detail record or a combination of mnemonics
identifying its content.

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

3. Display Files using Content Help function (F10/F4) must have the
associated /COPY generated by the specific utility. /Copy name will be:

PPPPPPSC:

Where:

PPPPPP : Program Name where associated Display File is used

SC : Constant

Printer Files 1. If there is just ONE Printer File in a program it will use the following

nomenclature:

PPPPPP PR

Where:

PPPPPP : Program Name where printer file is used.

PR : Constant

2. If a program uses more than one Printer File the nomenclature to be

used is:

PPPPPPPX

Where:

PPPPPP : Program name where printer file is used.

P : Constant

X : Letter from A to Z to identify each printer file in program

3. Record names in Printer Files must respect the following nomenclature:

e Header record : HEADER
e Detail record : DETAIL
e Total record : TOTAL

If more than one record kind (header, detail or total) is necessary, a
mnemonic hame identifying its content must be used.

/Copy members. | 1. Whenever possible, /COPY members must be used to avoid code
duplicity and improve maintenance time.

2. All “flat files” (without external descriptions or on IFS) will have their
structure described in /Copy members. Each program referencing those
files must use the appropriate /Copy member.

3. The below listed /Copy members will be created on almost all projects:
e PPPPARM: Data Area for General Parameters

Where:
PPP : Project Id
PARM : Constant

4. Procedures Prototypes will be stored in /Copy members in a Module
basis with the following nomenclature:
MMMMMMMMMH
Where:

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

MMMMMMMMM : Module Name
H : Constant
Example:

CvtH — Conversion functions Prototypes.

6. Any other member will be created using a mnemonic name identifying
its content.

Program 1. Inan RPG ILE program, definitions must have the following order:
Variables Prototypes

Arrays and Tables

Data Structures

Alphanumeric standalone fields

Numeric standalone fields

Pointers

Constants

NourWNE

2. Variables and Instructions in RPG ILE programs must use capital letters
on first and any other significant letter.

Example:
BnkErr : Bank Error
CliNam : Client Name
ValDigNbr : Valid Digits Number, etc.

It’s important to remember that in RPG ILE names are NOT limited to
6 characters. It’s a good practice to use extended names to identify
fields.

In previous example it will be better to use ClientName, BankError and
ValidDigitsNumber.

3. File's variables must be all in UPPER case to differentiate from internal
variables.
Example:
NomCli = CUSNA1

4. Variables created in the program must respect the following
nomenclature:
Prefixes:
$: Immediate Work Variables: Used in one or two consecutives
instructions and can be used anywhere in the program (results of
multiply, concatenation, division, etc.)
(Example $WK152 - Work variable with 15 digits and 2 decimals).

W : More durable Work variables such as accumulators, results to be
saved for an update, etc.

@ : Parameter Variables - PARM instruction, Procedure Interface (PI)

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

field or any variable used exclusively as a parameter received by
the program itself or to call a Program or Procedure.

K : Key Variables to access files.
k : Named Constants
Arr : Arrays

Ind : Indicators (type N variables or defined as character but used as
an indicator (true/false))

Pgm : Named Constants for Programs called by the program itself

Ds : Data Structures. Can precede file name for an externally defined
Data Structure

5. Any variable needing be renamed to avoid duplicity must have a prefix
(low case) according to:
s: For a SubFile variable.
For example CLINAM becomes sCliNam.
r: For a Display or Printer Record file.
Example IDENT becomes rldent.
Any other prefix can be used to rename variables using this low case
prefix method.

Indicators 1. Indicators must be used efficiently avoiding a high number of it.
2. Must be used by the following ranges:

01 a24 : Function F1 a F24 key conditioning
25a26 :PageDown/pageUp keys conditioning
25 : PageDown
26 : pageUp
27 : F4 or F10 (content help) result indicator
28 : PageDown result indicator
29 : PageUp result indicator
30 a 49 : Cursor Positioning in Display Files
51 : SFLNXTCHG
60 a 79 : Field conditioning in Display and Printer Files:
60 : MDT
61 : Key Fields Protection
80 a 87 : Subfiles Control (in pairs 80/81, 82/83, 84/85, 86/87)
80 : SFLDSPCTL
N80 : SFLCLR/SFLINZ
81 : SFLDSP + SFLEND

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

88 a 89 :Overflow (PRTF)

90 a 99 : Errors
97 : Record or File Change (CHANGE keyword)
99 : Message field conditioning

Subroutines and | 1. Subroutines and Procedures must be named using the Upper/Low Case
Procedures method. Names must be significant according to subroutine
functionality.
Example:
Lodsfl : Load Subfile
ValDet : Validate Detail, etc.

2. Most used names in maintenance programs are:
e IngRecord : Inquiry record
DeaRecord : Deactivate record
CrtRecord : Create record
ReaRecord : Reactivate record
UpdRecord : Update record
UpdFiles : Update Files
PrcF10 : Process F10(F4) Key

3. The EndSr instruction must have a comment in the same line with the
Subroutine’s name.

Example:
EndSr; // LodRecord

Parameter List 1. In Free, only Prototypes (PI and PR) wil be used to define parameters.
2. The "PR" definition (Prototype) must be stored in a /Copy member.

3. The PR must be named according its functionality (and not necessarily
must match Program Name for programs).

Example:
D Account Li st Pr Ext Pgn(' NNN105')
Key List 1. All Key Lists (KList instruction) must be named as follow:

Prefix + File Name + Sufix.

Posibles prefixes are:

KC: Complete Key (All key fields are in the list)

KP: Partial Key (Only x first key fields are in the list)

Sufix are optional and must be used to identify its use.

Examples: KCSrbCbn : Complete Key for file SRBCBN.
KPRinLot : Partial Key for file RINLOT (Just one partial
key defined in program).
KPRinLotOri : Partial key for file RINLOT with original key

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687
www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

data (more than one partial key defined for the file in the
program).

Message Files 1. Message Files will be created respecting the following nomenclature:
PPPMSGF
Where:
PPP: Project Id
MSGF: Constant

2. Message ids will use:

PPPYYYY: Issued by programs

Where:

PPP : Project

YYYY : Consecutive by ranges:
0001 - 0999 — Generic Messages (Invalid Date, Field Required,
etc.)
1000 - 2999 — Specific Messages used on programs validations.
9000 - 9999 — CL(LE) messages
9898 - Generic Message — Contains an unique 256 characters
variable.

VALYYYY: Issued by OS (SDA validations)
Where:
VAL : Constant
YYYY : Consecutive by ranges:
0001 - 9999 - Generic Messages

SCRYYYY: Title Screen Messages

Where:
SCR : Constant
YYYY : Consecutive by renages
0001 - 9999 — Screen Titles
Panel Groups 1. Help Panel Groups will respect the following nomenclature:
PPP HLP: Main Panel Group
Where:
PPP : Project Id
HLP : Constant
PPPPPP HLP: Display File Specific Panel Group
Where:
PPPPPP : Program (Display File)
HLP : Constant

2. Echa Help Label must use the following nomenclature:

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

XXXXXX/Y: Help text label

Where:

XXXXXX : Field's Name for which help is associated

/ : Constant

Y : Indicates if text is for an OUTPUT(O) or INPUT(I) field

Example: CLINAM/O: These label will be associated to CLINAM field
which is defined as OUTPUT only.

UIM Menus 1. UIM type Menus must use the following nomenclature:
PPPMENU
Where:
PPP : Project Id
MENU : Constant

Bind Directories 1. Bidn Directories wil be named according to:

PPPBNDDIR
Where:
PPP : Project Id

BNDDIR : Constant

Bind Language 1. Each Service Program must have its associated Bind Language member.

2. These members must be named according to the following
nomenclature:

PPPPPPPBND

Where:

PPPPPPP : Service Program Name
BND : Constant

3. When Service Program’s Name has more than 7 characters, less
significant characters must be removed to respect the constant part.

Trigger Programs | 1. Trigger Programs will use the following nomenclature:

PPP 7TXFFFFF

Where:

PPP : Project Id

T : Constant

X : Trigger Type

H = Log generation
D = Deletions

I = Adds
M = Updates
FFFFF : File which trigger is attached to

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

2.3 - . EFFICIENT PROGRAMMING

Comments:
Documenting a program is essential for an efficient programming since it allows a
better understanding program’s logic and less time to perform maintenance.

Among the best practices to create comments in a prograrm we should:

1. Avoid using comments on the same statement line. Place it before instructions in a
separate line.
2. Add comments to clarify the code not to reflect the code

= Avoid
//->01 If Var = 5
If Var = 5;

= Use something more explanatory
[1->01 If Level variable is New
If Var = kNew, (here named constant kNew has val ue 5)

3. Explain extensively all process that can be difficult to be understood by someone
else.

4. Document simple steps with simple comments.
5. Document all conditional/block instructions (If, Else, When, For, Select/When, etc.)

6. Place all instructions implying in a logic flow change (L.eave, LeavSr, Return, EXSr,
etc.) explicitly between comments.

//*****

LeaveSr;
//*****

] ** ======
ExSr PrcF10;
/] ** ======

Templates:

1. Depending on program'’s type (interactive or batch) there is a "template" program
that can be used as a base for all programs to be developed and should be used
whenever possible. These templates are the result of years of improving
programming techniques that proved to be efficient in development time and
maintenance.

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

Clauses /Copy and /Include:
1. This function allows you to copy external source members in your program at
compilation time. The main advantage of using it is to avoid code duplication and
standardization.

2. It is extensively used in:
e Prototypes Definitions
e Flat Files Descriptions
¢ Data Areas Structures Descriptions
e Parameters lists
¢ Data Queues Entries Descriptions
e Special Data Structures Descriptions (SDS, Feedback, LDA, etc.)
¢ Data Structures Descriptions (Parameters, Common Data, etc.)

Variables Definitions:
1. All Variables without exception must be defined in Definition Specification (D).

2. Whenever possible, use the keyword Like to define a variable based on an another
one defined in a file (they must be related). For example, work variables for totals,
counting, temporary variables, File key variables, etc.

3. When defining a variable, explicitly set its type.
D $Tot al Anpunt S 15P 2 // P is inportant for reading

even if it'’s inmplicit for
defining a packed field

4. Whenever possible, use Integer variables (I) (3,0, 5,0, 10,0 or 20,0) or packed. They
use less memory and are best handled by OS.

5. Use auto-initialization on variables (keyword "INZ") whenever possible. This will
avoid additional instructions.

6. Variable names must start at position 8 (7 must be blank)

7. Each subfield name must start at position 8 + n where n is the subfield level

Example:

D DsEj empl o Ds (A single blank between D and
t he DS nane)

D Subfield 85 0 (Two bl anks (first |evel
subfiel d))

D SubSubCampo 4S 0 Overl ay(Subfi el d)
(Three bl anks(second | evel
subfield))

8. The following listed variables are "standard" and are/must be used by nearly all
interactive programs and must be respected.
$LEVEL I(5,0) : Screen Level

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

MSGID A (4) : Message Code (variant WMSGID)
RRN S (4,0) : Relative Record Number on SubFile(variants RRN1, RRN2,
etc.)
SOPC A (2) : Selection Field in SubFile (variants SOPC1, SOPC2, etc.)
Constants:
1. Use only Named Constants. It allows better readability and easy maintenance.
Example:

Name = '*'; (that doesn’t say much)

Name = kVari abl eNare;
(kvariableName is a named constant with value *'. The code is a little bit more
extensive but easier to understand)

2. Do NOT use the CONST keyword in the Named Constant definition.

3. Use Special Constants *Blanks, *Zeros, *All’x" (and others) to initialize or compare
fields.

4, Use the Clear instruction to initialize fields with its basic value.

5. Use only *On and *Off Special Constants to turn on, off and test indicators and
logical variables.

Indicators:
1. If you can't rename them, use only *Inxx variables and *In(x) array to refer to
indicators.

2. When initializing multiple consecutive indicators, use %SubArr.
Example:
YSubArr(*In : 30 : 10) = *Of;
This single statement set indicators 30 to 39 off.

3. Use indicators when really necessary. If possible, use a work variable (N type) as
indicator.
Example:
Variable IndNewClient may contain *On whether it is a new client and *Off
otherwise.

4. Use logical expressions to assign values to an indicator or logical type variable
Example:
*IN99 = (Msgld <> *Bl anks);

5. Use indicator variables for their value directly and avoid the comparison

Example:
If *1n97 /1 (instead of *I1n97 = *On)
If Not *In60 /1 (instead of *In60 = *COff)

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

Keys Lists (Klist):
1. Use different Klists as needed. Avoid defining a generic Klist. It will force to do an
Eval before accessing files.

Structured Instructions:
1. Use Structured RPG Instructions (If, Select, Do, For, etc.) extensively. It's easy to
maintain and reading.

2. DO NOT use simple (generic) END instruction. Use only complete meaningful
instructions (EndIf, EndSl, EndDo, etc.)

Documenting Structured Instructions:

1. To make a simple documentation of Structured Instructions (If, When, Do, etc.) we
will use comments with a specific format. It will indicate the block’s level and will
allow easy reading and maintenance.

A comment must be used BEFORE block begins and after each block instruction
(Else, Other, etc.).

2. We will use the format //->xx to indicate the level of each nest, beginning at the

same column of instruction.
xx represents the level and must always contains 2 characters (01, 02, etc.).
Examples:
[1->01 If rmust call the Calculator (Begin First |evel)
I f *I nKE;

//->02 If NO Requested Associ ated Nunber (Begin Second |evel)

If Il sNso = *Zeros;

Msgl d = ErrAssoci at eNunM ssi ng;

Endl f;

//->02 Endlf (End Second | evel)
Endl f;
//->01 Endlf (End First |level)

Goto/Tag:
1. The GoTo and Tag instructions can NOT be used on "Free" so you must design the
program to use DO, DOW, DOU, EXSR, EVAL (using a procedure), LEAVESR,
RETURN or LEAVE accordingly.

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

Reading Files, Locking Records:
1. Avoid unnecessary locks on data records. Use the “No Lock” Option (N) in file access
instructions (Read(N), Chain(N), etc.) the first time you read a record and do it

again just before Updating file.

2. Avoid unnecessary data transfer from disk to memory (program). When making just
a key validation where no data from file is needed, use the SETLL instruction to
verify key existence. No data will be read and no data will be transferred from disk
to memory.

Example:
/'l Validates file key
Setl| Key File;
[1->01 If No key on file
I f NOT %Equal ();

(manage non exi stence)
Endl f;
/1->01 Endlf

3. Avoid using the instructions READPE and READP if many records are read at once.
Resource-intensive.

4. To make a loop to read a file, avoid instruction ReadE if expecting many records at
once to be read. Instead use Read and control group (key) through comparisons in
the loop.

5. When making reference to a file in a program (Read, Update, Chain, etc. .), do it by
using Record Names and not File Names (where allowed).

6. Use the %Eof(), %Found() and %Equal() bifs to validated file access. DO NOT USE
INDICATORS.

7. On previous bifs, do not use the file name as parameter when the file was the last
accessed. Only use file name if you want to refer to a file access result in another
part of the flow and/or could cause problems with reading or further validation.

Message Files:

1. Use message files extensively. Maintaining these objects is very simple and quick
and allows standardization in messages.

2. Use messages in titles on Display Files when it can be used by more than one
program (basically CLPs). It will allow using one display file for many programs.

Multiple-occurrences/Array Data Structures:
1. Whenever possible and the program keeps a reasonable size in memory, use
multiple-occurrences (or array) Data Structures to keep data in memory, avoiding
disk accesses.

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687
www.i400consulting.com — info@i400Consulting.com

i/400 Consulting

Always Evolving

Consulting

2. They can be used to store two versions of a set of variables. For example, variables
in the Display File may be an occurrence of a DS and Disk File Variables another
occurrence.

Subroutines/Procedures:
1. Use Procedures instead Subroutines in programs.

2. A structured program is not a program with subroutines or procedures. Use
subroutines when really necessary or when it will be called more than once within
the program.

3. *INZSR - Use this special subroutine to initialize fields, do validations on passed
parameters, etc. Only runs automatically the first time the program is called or
using EXSR instruction.

4. Define *INZSR Subroutine just before last in a program. (The last should be *PSSR)

5. Define subroutines in the same order as they are referenced.

6. *PSSR - Use this special routine to take control of unexpected program errors.

i400 Consulting, Inc.

Dos Mares, Calle Circunvalacién, casa K14A — Panamd — Rep. de Panama
+507 2360969 cel.: +507 6468 1687

www.i400consulting.com — info@i400Consulting.com

